首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   18篇
  2021年   2篇
  2017年   2篇
  2016年   2篇
  2015年   6篇
  2014年   5篇
  2013年   8篇
  2012年   14篇
  2011年   18篇
  2010年   11篇
  2009年   6篇
  2008年   19篇
  2007年   28篇
  2006年   11篇
  2005年   20篇
  2004年   16篇
  2003年   16篇
  2002年   17篇
  2000年   3篇
  1999年   3篇
  1998年   6篇
  1997年   6篇
  1996年   2篇
  1995年   4篇
  1994年   6篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1977年   2篇
  1975年   2篇
  1972年   1篇
  1971年   1篇
  1970年   4篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1963年   2篇
  1960年   1篇
  1959年   1篇
  1957年   2篇
  1956年   2篇
  1954年   3篇
  1939年   1篇
排序方式: 共有288条查询结果,搜索用时 16 毫秒
91.
92.
93.
94.
95.
In yeast like in many other eukaryotes, fatty acids are stored in the biologically inert form of triacylglycerols (TG) and steryl esters (SE) as energy reserve and/or as membrane building blocks. In the present study, we identified gene products catalyzing formation of TG and SE in the methylotrophic yeast Pichia pastoris. Based on sequence homologies to Saccharomyces cerevisiae, the two diacylglycerol acyltransferases Dga1p and Lro1p and one acyl CoA:sterol acyltransferase Are2p from P. pastoris were identified. Mutants bearing single and multiple deletions of the respective genes were analyzed for their growth phenotype, lipid composition and the ability to form lipid droplets. Our results indicate that the above mentioned gene products are most likely responsible for the entire TG and SE synthesis in P. pastoris. Lro1p which has low fatty acid substrate specificity in vivo is the major TG synthase in this yeast, whereas Dga1p contributes less to TG synthesis although with some preference to utilize polyunsaturated fatty acids as substrates. In contrast to S. cerevisiae, Are2p is the only SE synthase in P. pastoris. Also this enzyme exhibits some preference for certain fatty acids as judged from the fatty acid profile of SE compared to bulk lipids. Most interestingly, TG formation in P. pastoris is indispensable for lipid droplet biogenesis. The small amount of SE synthesized by Are2p in a dga1?lro1? double deletion mutant is insufficient to initiate the formation of the storage organelle. In summary, our data provide a first insight into the molecular machinery of non-polar lipid synthesis and storage in P. pastoris and demonstrate specific features of this machinery in comparison to other eukaryotic cells, especially S. cerevisiae.  相似文献   
96.
All eukaryotes including the yeast contain a lipid storage compartment which is named lipid particle, lipid droplet or oil body. Lipids accumulating in this subcellular fraction serve as a depot of energy and building blocks for membrane lipid synthesis. In the yeast, the major storage lipids are triacylglycerols (TGs) and steryl esters (SEs). An important step in the life cycle of these non-polar lipids is their mobilization from their site of storage and channeling of their degradation components to the appropriate metabolic pathways. A key step in this mobilization process is hydrolysis of TG and SE which is accomplished by lipases and hydrolases. In this review, we describe our recent knowledge of TG lipases from the yeast based on biochemical, molecular biological and cell biological information. We report about recent findings addressing the versatile role of TG lipases in lipid metabolism, and discuss non-polar lipid homeostasis and its newly discovered links to various cell biological processes in the yeast.  相似文献   
97.

Objective

The endothelial protein C-receptor (EPCR) is an endothelial transmembrane protein that binds protein C and activated protein C (APC) with equal affinity, thereby facilitating APC formation. APC has anticoagulant, antiapoptotic and antiinflammatory properties. Soluble EPCR, released by the endothelium, may bind activated neutrophils, thereby modulating cell adhesion. EPCR is therefore considered as a possible link between the anticoagulant properties of protein C and the inflammatory response of neutrophils. In the present study, we aimed to provide proof of concept for a direct binding of EPCR to the β2 –integrin Mac-1 on monocytic cells under static and physiological flow conditions.

Measurements and Main Results

Under static conditions, human monocytes bind soluble EPCR in a concentration dependent manner, as demonstrated by flow cytometry. Binding can be inhibited by specific antibodies (anti-EPCR and anti-Mac-1). Specific binding was confirmed by a static adhesion assay, where a transfected Mac-1 expressing CHO cell line (Mac-1+ cells) bound significantly more recombinant EPCR compared to Mac-1+ cells blocked by anti-Mac-1-antibody and native CHO cells. Under physiological flow conditions, monocyte binding to the endothelium could be significantly blocked by both, anti-EPCR and anti-Mac-1 antibodies in a dynamic adhesion assay at physiological flow conditions. Pre-treatment of endothelial cells with APC (drotrecogin alfa) diminished monocyte adhesion significantly in a comparable extent to anti-EPCR.

Conclusions

In the present study, we demonstrate a direct binding of Mac-1 on monocytes to the endothelial protein C receptor under static and flow conditions. This binding suggests a link between the protein C anticoagulant pathway and inflammation at the endothelium side, such as in acute vascular inflammation or septicaemia.  相似文献   
98.
A new convenient high-yield synthesis of the tris-cyclometalated complexes fac-[Rh(ppy)3] (4; ppy = 2-phenylpyridinato) was developed. Complex 4 was prepared in a kind of one-pot synthesis starting from in situ prepared [Rh(acac)(coe)2] (2) which was heated in refluxing 2-phenylpyridine for a short time. After purification by filtration over alumina, compound 4 was obtained in yields of 65%. Also [Rh(acac)(ppy)2] (3) was prepared in a similar manner by oxidative addition of Hppy in refluxing toluene in high yields. In contrast to previous findings with the analogous iridium compounds, there was not any hint at the formation of the isomer mer-[Rh(ppy)3] using similar reaction conditions as applied for iridium. Furthermore the compound [{Rh(μ-Cl)(ppy)2}2] (5) was prepared from [{Rh(μ-Cl)(coe)2}2] (1) and Hppy in refluxing toluene in nearly quantitative yield.  相似文献   
99.
The synthesis of bis-cyclometalated [Ir(ptpy)2(gly-gly-OEt)] (2, ptpy = 2-(p-tolyl)pyridinato; gly-gly-OEt = glycylglycine ethyl ester) and [Ir(ptpy)2(gly-gly-gly-OEt)] (3, gly-gly-gly-OEt = glycylglycylglycine ethyl ester) from the reaction of [{Ir(μ-Cl)(ptpy)2}2] (1) with the corresponding peptide ester hydrochlorides in the presence of NaOMe is described. The molecular structure of 2 was confirmed by a single-crystal X-ray diffraction study. The compound crystallized from dichloromethane/iso-hexane in the space group P21/a. In the crystal packing the molecules of 2 exhibit N–H?O hydrogen bonds to the neighbor molecules to form dimeric units. The absorption and emission spectra of 2 and 3 were recorded and exhibit these compounds as strong green-emitting complexes.  相似文献   
100.
Pyridoxal 5′-phosphate (PLP) is required as a cofactor by many enzymes. The predominant de novo biosynthetic route is catalyzed by a heteromeric glutamine amidotransferase consisting of the synthase subunit Pdx1 and the glutaminase subunit Pdx2. Previously, Bacillus subtilis PLP synthase was studied by X-ray crystallography and complex assembly had been characterized by isothermal titration calorimetry. The fully assembled PLP synthase complex contains 12 individual Pdx1/Pdx2 glutamine amidotransferase heterodimers. These studies revealed the occurrence of an encounter complex that is tightened in the Michaelis complex when the substrate l-glutamine binds. In this study, we have characterized complex formation of PLP synthase from the malaria-causing human pathogen Plasmodium falciparum using isothermal titration calorimetry. The presence of l-glutamine increases the tightness of the interaction about 30-fold and alters the thermodynamic signature of complex formation. The thermodynamic data are integrated in a 3D homology model of P. falciparum PLP synthase. The negative experimental heat capacity (Cp) describes a protein interface that is dominated by hydrophobic interactions. In the absence of l-glutamine, the experimental Cp is less negative than in its presence, contrasting to the previously characterised bacterial PLP synthase. Thus, while the encounter complexes differ, the Michaelis complexes of plasmodial and bacterial systems have similar characteristics concerning the relative contribution of apolar/polar surface area. In addition, we have verified the role of the N-terminal region of PfPdx1 for complex formation. A “swap mutant” in which the complete αN-helix of plasmodial Pdx1 was exchanged with the corresponding segment from B. subtilis shows cross-binding to B. subtilis Pdx2. The swap mutant also partially elicits glutaminase activity in BsPdx2, demonstrating that formation of the protein complex interface via αN and catalytic activation of the glutaminase are linked processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号